
IBt'l OBJECT DES IGN
Ultima VI

Design Notes Collection - Technical Design

OBJECT DESIGN
This section discusses those features about objects that 'w'111be i mplemented 1n Ulli •• YI . The
pri mary author of this section 1~ Herman Mmer. Any questions should be addressed to him.

DEFINITIONS

Object: Anobject is any ani mate or i nam mate thi ng that can be mam pulated or
changed by a player of Ultilll6 YI . In the i ram mate case, doors, bottles,
chai rs, carts, chests, etc. are considered to be objects of the si mple ki00.
These objects are desert bed by a si rmlar structure listed in further pages of
this document. In the ani mate case, an object may be considered to be a Non-
Player character, an enchanted, danci ng cnei r, or a monster. In general, an
animate object could also be called a monster or NPC, In a fe'w'rare cases vtll
an object be ani mate that does not take on livi ng characteristics. As in an
inanimate object, an animate object has the same Object Structure to define
its basic characteristics, but it also contains additional information to define
its more 1ivi ng qualiti es

Shape Type The Shape Type of a tile is the Number of the fi rst tile in the group of tiles or
it may be a reference number base for a tile. The fi rst case 'w'ouldappl y to
objects like doors. The shape type vould be the door tile number. Whether it
vas open or not (a different tile) , the shapetype for any door found 'WOuldbe
the same. The second case vould make the shape type the fi rst tile in an
ani mation sequence (contiguous tiles).

Safe Macro: A macro that does not cause mysterious effects to occur vnen a parameter uses
increment + + and decrement - - operators, or other potentiall y destructive
expressions.

Unsafe Hacro: AMacro that caUf~~mysterious effects to occur vhen the parameter(s)
passed contat n complex expressions and/or increment + + or decrement --
operators.

RESTR ICT IONS AND USES

Si nce every thi ng that can be mam pulated by an Ullilll6 YI player is considered to be an object,
there are very revrestrictions as to vhat may pctentiall y be done by the player. It is ceneieveble
to turn a statue of a tiger into a real tiger. It is possi ble to reduce a person to vooe shavings. A door
can be turned 1nto a VIindov, or a vizard. There is a practicalli mit to the number of more Complex
objects in the game. Because of the increase in size of the structure, a11mit of 256 of these objects
is allotted. Most of these vtll be the NPC's that can be found in the game. There is a pesst bility that
another 32 or so 'w'ill be added to act 83 monsters to be generated for combat.

Frt, Mar 17, 1989 Page 1



IBM OBJECT DESIGN

OATA STRUCTURES

Ultima VI
Design Notes Collection - Technical Design

The Object list 1S8 comptlatton of sl mtlar data structures. For sl mpl1cHy and speed, the f1rst 256
of these structures are the extended type needed for characters and monsters. The next 256
Objects are the party inventory. The rest of the Object List is dlvided into 16 regions, each region
bel ng part of the map. When characters cross from one map region to another, the Object Lists for
the nev regions are loaded and the old ones are saved. I n the IBM i rnplementetion the structures
are saved in memory as parallel arrays. for purposes of discussion, they vill be vieved as
follovs:

Byte
Offset

+0
+1
+2
+3
+4
+5
+6
+7

• +8
+9
+A
+B
+C
+0
+E
+F
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19

Page 2

Memory Contents
...........................................
:::::::::::::::::::::::::::::::::::::::::::

- Obj status - :::::::::::::::::::::::::::::::::::::::::::
t-----------i~~I~~~~~~~~l~@lf~l~t~~lf~~i~
- struct coord - :::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::
- Obj Pos - ::::;::::::::::::::::::::::::::::::::::::::
t-- -t}Common to)

}all objects:~:~
I- struct shape type - .:.;. :.:.:.:.:..:-:.:.:.:.:.:.:.:.:.:.>:.:.:.:.:.:.:
I- ObjShapeType - :::::::::::::::::::::::::::::::::::::::::::

t-----------tl~llfffffff~r
-cootai n:Qr:~~;~uantity -l:~l~lll~ll~lllll~~llllllllll[~ll:il~lll~ll

Strength/Wgt ~~
Dex/Moy

Added data for
NPC's, Monsters

and "Living"
Objects

Intell/Mog

StrExp- -

DexExp- -

IntExp -

HitPts

Schedule

NPCFlogs
leader

Fri, Mar 17, 1989



.,

Ultima VI
Design Notes Collection - Technical Design

ABOUT ObjStotus

IBM OBJECT DES IGN

ObjStatus is a series of flags, vith each bit or cornet nation of bits desert bi ng the condition of
an object. The diagram desert bes thei r locations and functions.

Reserved; set to 0 JJ
INVISIBLE

iO'lisib le = 1
not iovisible = 0

BERSERK
berserk = 1

not berserk = 0
PARALYZED
paraNz~ = 1

not para1Yz~ = 0
ASLEEP

asleep = 1
not asleep = 0

POISONED
poisoned = 1

not poisoned = 0

BLESSEDor MAGLOCKED
blessed or magic locked = 1

not blessed or magic locked = 0

CURSEDor LOCKED
cursed or locked = 1

not cursed or locked = 0
LIT or OPEN

lit object or an open door = 1
unlit object or a closed door = 0

DEADor BROKEN
dead or broken = 1

not dead or broken = 0

coord structure use
NPC equipped item = 11

NPC inventory item = 10
Within Object = 01
XVZlooal1oo = 00

object alignment
attack any thing = 11
player ali9ned = 10

monster aligned = 01
passive = 00

CONTROL
player control = 1

computer control = 0

SENTIENT
sentient = t

not sentient = 0

Fri, Mar 17, 1989 Page 3



Ifni OBJECT DESIGN

Design NotesCollection - Technical Design
Ultima VI

ABOUT st •...uct coo r d Ob jPos

Obj P03 is actuell y 3 bytes that act as if they 'w'erea union of four struetures.Theu are not a
union in the C language sense because they are not declared as such. A diagram of its four uses
1S detailed belov.

ObjP03 has 4 functions, In most cases it will register the X- Y-Z 10catioD of an object. But
1n other cases, the object vill be associated vith another object. These associations may be
Withi D,IDyeDtor~, or [qui pped. In such instances, Obj Pos uses its tvo lover bytes to
act as a pointer to the associated object. Theoreticall y, such a system 'w'ouldallo.•. nesti ng of
associations. 10 Ullilll6 YI this 'w'ill not occur.

Inventurg, Equipped, and Within type struct coord

Byte
Offset

+0
+1
+2

D
W

D

Bit Positions
7 6 543 2 1 0

Pointer to Associated
Object

UnusedBits

X-Y-Z location structure coord
Byte Bit Positions
Off set 7 6 5 4 3 2 1 0

+0
+ t
+2

Page 4

x X X X X X X X

Y Y Y Y Y Y X X

Z Z Z Z Y Y Y Y

Fri, Mar 17, 1989



IBM OBJECT DESIGN

Ultima VI"
Design Notes Collection - Technicet Design

ABOUT struct shape type ObjShapeType

ObjSh.peT~pe contatns information about the type of object there is and it current on-
screen shape. Both of these pieces of i nformatioo take 12 bits to desert be, so three bytes have
been allocated to thei ruse.

~,e.-

"" '\ ,'- ..,., //// .. '.' '" "J" '''' .:-:.:.: :-:.:.:. -:-:.:.: :.:-:-:.

struct shape type

&~O~T:;F'e.,-

GeJ-rro\VVleNv~
GeJ.Sh~reN()M

nw Shape Number ShOWlng

Shape Type in Actuality0,.; .;,,
" .;

ABOUT Amount

Amount is iI 2- byte val ue that serves a double purpose. In cases vnere the Qu.lit~ of an
item is not of particular use, te. food and Gold, both bytes are used as a counter. In most other
cases the bytes are divided up i nto Qua1it~and Qu.nt1t~ bytes.

Quantit~ indicates ho'>tl many of the given object is available. The range is 0- 255.

Qua1it~serves a unique purpose for each type of Object. for example, the QU81it~of a key
could refer to 'Whatdoor it will open. Asi mple test of the Qu.1it~ of a door againstthe
Qualit~ of a key vtll determi neif that key opens the door. AQua1it~associated vttn an
Object called 'Magic Spell' 'w'ouldindicate 'Whichmagic spell it 'Was.

ABOUT Strength/Wgt

Strength/Wgt is a t - byte val ue that is composed of tvo ni bbles of data. The lov ni bble
contai ns the actual strength vel ue of the Object, The high oi bble contai ns the 'Weightit may
carry.

ABOUT Dex/Moy

Dex/Moy is a t - byte val ue that is composed of two m bnles of data. The 10'" ni bble contet ns
the actual dexterity vel ue of the Object, The high oi bble contei ns the movement points it has
left.

Frt, Mar 17, 1989 Page 5



isn OfiJECT DESIGN

Ultima VI
Design Notes Collection - Technical Design

ABOUT Intell/May

I ntell/Mag is a 1- byte val ue that is composed of tvo mbbles of data. The lo'w'ni bble ccntei ns
the actual i nte11igence vel ue of the Object, The high ni bble contei ns the Magic points available
for use.

ABOUT 5trExp ~DexExp~ and IntExp

These a 2- byte vel ues keep track of the amount of experience gai ned in each statistic.

ABOUT Hi tPts

Contains a record of ho'w'many hit points the Object has left.

ABOUT Schedule

Schedule is still not developed at this t1me.

ABOUT NPCFlags

NPCFlags contat ns extra information regardi ng an NPC. Here it will be determi ned vnat ki nd
of movement mode the Object is in. Follov mode can nOW'be defi ned as Adjacent an Near', to
hel p the NPCTracker move multi -tile objects. Drunt and Fleet ng conditions can also be
noted here.

ABOUT leader

Leader is a pointer to the Leader Object. This is especiatl y useful to the NPCTracker vhich
must move Objects in a particular di recti on based on the Follovi ng Mode. In a multi -tile
monster, the Leader vill be considered to be the head. All Objects associated vith the creature
will have this location filled vtth the Number of the head.

Page 6 fri, Mar 17. 1989



IBM OBJECTDESIGN

Ultima VI
Design Notes Collection - Technical Design

IBM OBJECT DATA ORGANIZAT ION

As mentioned above, the data structure organization in IBM memory is ectuall y a series of parallel
arrays. Some of these arrays are to be accessed onl y by macros, others by di rect mani puletion of
the arrays. Acomplete tistt ng of those arrays and thei r deseri ption and eceessi fig methods are
listed belov.

FUNCT IONS AND MACROS AVA ILADLE

The follo'vli fig list of functions and macros are designed to properl y interface vttn the Object Data
Structure. These routi nes 'vim be the onl y interface method accepted. Si nee Macros are also
discussed here, it should be pointed out that Macros vill be divided into safe and uosafe
categories. All macros are to be considered uosafe unless stated othervtse.

ARRAVS AVAILABLE FORGENERALACCESSING
These arrays may be mam pulated di rectl y in the standard fashions. DO NOT access the other

arraus in any other fashion, other than the macros given.

unsigned int Amount[L i stS1zel:

unsigned int
unsigned mt
unsigned tnt
unsigned char
unst gned char

StrExp[256l;
DexExp[256];
IntExp[256];
HitPts[256];
Leader[256];

same memory as Quality/Quaotng bytes.
Use this ONLY 'WhenQuality and Quotny
are not important. Otbervise, use the macros
to access this data array. At this vritt fig you
may use AlDOuot vben you are mampulati fig

food and Gold.
found in extended structure
found in extended structure
found in extended structure
found in extended structure
found in extended structure

MACROSV-IHICHMANIPULATE Amount IN Quality/Quantity FORMAT
These macros place val ues into each byte as def ned in the structure of Amouot.

char GetQual (Obj ectsum):
char GetQuan(Ob j ectnum):
char SetQua1(ObjectNum, Value);
char SetQuan(ObjectNum, Value);
char AddQua1(ObjectNum, Value);
char AddQuan'(ObjectNum, Value);
char SubQua1(ObjectNum, Value);
char SubQuon(ObjectNum, Value);
char Qual Quan(Qua 1i ty, Quantity);

Frt, Mar 17, 1989

returns Value given
returns Value given
returns ne'WQuality amount
returns ne'vlQuantity amount
returns nev Quality amount
returns nev Quantity amount
Compresses Quality and Quantity into an
integer to place into array't\lDOuot.

Page 7



rsn OBJECTDESIGN

Ultima VI
Design Notes Collection - Technical Design

MACROSWHICHTESTObj5tutus BITS
These macros are considered safe. Each macro returns a TRUEor FALSEresult depending on

whether the bit is set or clear. In general: if a bit is set, the result is TRUE.See fig. 4 for a
complete lieti ng of the bit fields bei ng tested. Note that 4 bit fields have overlappi ng functions. TJle
macro ltst below places those macros which operate on the same bits on the same ltre.

These macros test the si mple Bit fields in ObjStatus.
mt IsPlrControl(Ob j ectNum); player or computer controlled object?
mt IsSentient(ObjectNum);
int IsBrolcen(ObjectNum);
int Islit(ObjectNum);
int IsCursed(Ob j ectnum):
1nt Is61essed(Ob j ectNum);
int IsPoi soned(Ob j ectNum);
int IsAsleep(ObjectNum);
int IsPuru 1yzed(Ob j ectsum):
1nt I sBerserlc(Ob j ectNum);
tnt Islnvisible(ObjectNum);

These macros test the alignment of an object
int IsNeutrol (Obj ectNum);
int IsGood(Obj ectsum):
int IsEvi1(ObjectNum);
int IsChootic(ObjectNum);

int IsDeod(ObjectNum);
tnt IsOpen(ObjectNum);
tnt Isloclced(ObjectNum);
tnt IsMagloclced(ObjectNum);

is alignment passive?
is it player a11gned?
is it monster aligned
is it an enemy to everything?

These macros deterrm ne hov struct coord is to be used. Also determi nes if an itemis equi pped or
not.
int
int
int
int

IsXYZ(Obj ectNum);
Is InObj (Obj ectsum):
IsEqui pped(Obj ectxum):
IsUnEqui p(Obj ectNum);

int Islnven(ObjectNum);

Page 8

used as an XYZ locator?
used as an association to an object?
used to tell to which NPCit is equi pped?
used as an NPCinventory but not equipped?

used as an NPCinventory equt pped or not?

Fri, Mar 17, 1989



IBM OBJECTDESIGN

Ultima VI
Design Notes Collection - Technical Design

MACROSv1HICHMANIPULATE ObjStatus BITS
The followlng macros are safe to use. Set ...O sets a status bit to 1, Clr ...O returns a bit to O.

Those macros which operate on the same status bits but have differi ng names are preceeded by
si milar markers.

void SetSent 1ent(Ob j ectsum): void C1rSent 1ent(Ob j ectNum);
void SetPl rContro 1ten j ectsum): void Cl rPl rContro 1(Obj ectsum):
void SetBrolcen(Ob j ectNum); void Cl rBrolcen(Ob j ectNum);
void SetDead(Ob j ectNum); void Cl rDead(Ob jectNum);

2 void Setl j t(Ob j ectnum): void ClrUt(ObjectNum);
2 void SetOpen(Ob j ectsum): void Cl rOpen(Ob j ectNum);
3 void SetCursed(Ob j ectNum); void Cl rCursed(Ob j ectsum):
3 void Setloclced(Ob j ectNum); void Cl rlocked(Ob j ectNum);
4 void SetHI essed(Ob j ectNum); void Cl rBl essed(Ob j ectNum);
4 void SetMoglocked(Ob j ectnum): void Cl rMaglocked(Ob j ectNum);

void SetPoi soned(Ob j ectNum); void Cl rPol soned(Ob j ectNum);
void SetAs 1eep(Ob j ectnum): void Cl rAs 1eep(Ob j ectsum):
void SetParal yzed(Ob j ectrtum): void Cl rParal yzed(Ob j ectNum);
void SetBerserlc(Ob j ectNum); void Cl rBerserlc(Ob j ectNum);
void Set Invisl ble(Ob jectrium): void CI rl nvj sib 1e(Ob j ectNum);

SPECIAL MACROSFORObjStatus
The tvo Get...O macros return the full vel ues of thei r combination bits. The Set ...O macro

must be passed the comparisons listed to work correctl y. The Get...O macros are safe. The
Set...( ) macro is unsafe.

void SetAllgnment(ObjectNum, Alignment);
int GetAllgnment(ObjectNum);
i nt GetCoordUse(Ob j ectxum): Macro to determi ne hoW'struct c80rd is used.

Return Values from
GetCoordUseO

LOCXVZ
CONTAINED
INVEN
EQUIP

acts as XYZ location
POlnter to object it ts 1n
pointer to NPCit belongs to
pointer to NPCit is equt pped on.

A1i gnments are: NEUTRAL
EVIL
GOOD
CHAOTIC

passive alignment
monster aligned
player aligned
attack everythi ng

Fri, Mar 17, 1989 Page 9



IBM OBJECT DESIGN

Ultima VI
Design Notes Collection - Technical Design

MACROS v1HICH MANIPULATE STRUCT coord ObjPos
The Get ...() macros are safe.

tnt 6elX(ObjectNum);
tnt 6elY(ObjectNum);
int 6etZ(Ob j ectNum);
int 6etAssoc(ObjectNum);

MACROS WHICH MANIPULATE STRUCT coord
Macros used on struct coord deti ned in a function:

int 6elCoordX(StructName);
int 6etCoordY(StructName);
int GelCoordZ(StructName);
int GetCoordAssoc(StructName);

VOl d SelCoordX(StructName, X);
void SetCoordY(StructName, V);
void SetCoordZ(StructName, Z);
void SetCoordXY(StructName, X, V);
void SetCoordXYZ(StructName, X, V, Z);

void SetCoordAssoc(StructName, Value);

Page 10

returns Xccordi nate of an object
returns Ycoordi nate of an object
returns Z coordt nete of an object
returns pointer number vhen struct
coord is used as an inventory, equipped,
or wit hin type.

returns Xcoordi nete of an object
returns Ycoordi rete of an object
returns Z coordinate of an object
returns pointer number vhen street
coord is used as an inventory, equi pped,
or vtthi n type.

sets Xcoordi nate of an object
sets Ycoordi nete of an object
sets Z coordi nate of an object
sets Xand V coordi nates of an object
sets X, Y, and Z coordi nates of an
object
sets pointer number vhen struct
coord is used as an inventory,
equi pped, or 'fIithi n type.

Fri, Mar 17, 1989



IBM OBJECTDESIGN

Ultima VI
Design NotesCollection - Technical Design

MACROSTHAT OPERATEONSTRUCT shapetype ObjShapeType
Thesemacros operate vtth struct shapetype in the object list. Get...O macros are safe. Set ...O

macros are unsafe.

int GetShape(ObjectNum);
i nt GetType(Ob j ectaum):
void SetShape(ObjectNum,ShapeNum);

void SetType(ObjectNum, ShapeType);

returns ShapeNumber of Object
..., returns ShapeType of Object

sets the ShapeNumber of an
Object.
sets the ShapeType of an Object.

MACROSWHICH MANIPULATE THE EXTENDEDPORTIONOF OBJECTS
The f1rst 256 Objects are slightl y different than other objects 1n that thei r structure is the

extendedtype found on page3. The fcllovt fig macros deal 'With the extra fields sbovn.

1nt GetStriOb j ectnurn):
int GetDex(ObjectNum);
int Getlnt(ObjectNum);
int GetWgt(ObjectNum);
int GetMov(ObjectNum);
1nt GetMag(Ob j ectNum);

VOl o SetStr(Ob j ectNum, Nevv'Str);
void SetDex(ObjectNum, NewDex);
void Setlnt(ObjectNum, Newlnt);
void SetWgt(ObjectNum, NewWgt);
void SetMov(ObjectNum, NewMov);
VOl d SetMag(Ob j ectNum, NewMag);

returns Object's Strength;
returns Object's Dexterity;
returns Object's Inte11igence;
returns Object's Wgt;
returns Object's movement value;
returns Object's Magic Points:

sets Object's Strength;
sets Object's Dexterity;
sets Object's Inte11igence;
sets Object's Wgt;
sets Object's movement val ue:
sets Object's Magic Points;

These Macros do not do boundscnecki ngat all. They vrep around
VOl d AddStr(Ob j ectNum, edd): addsto Object's Strength;
VOl d AddDex(Ob j ectNum, add); addsto Object's Dexterity;
VOl d Add Int(Ob j ectNum, add); addsto Object's Inte11igence;.
vote AddWgt(Ob jectNum, add); addsto Object's Wgt;
VOl d AddMov(Ob j ectNum, add); addsto Object's movement vel ue:
vote AddMag(ObjectNum, add); addsto Object's Magic Points;

These Macros do not do boundschecking at all. They 'Wraparound
void SubStr(ObjectNum, sub);
vote SubDex(ObjectNum, sub);
vote Sublnt(ObjectNum, sub);
vote SubWgt(ObjectNum, sub);
votd SubMov(ObjectNum, sub);
void SubMag(ObjectNum, sub);

Frt, Mar t 7, t 989

subtracts from Object's Strength;
subtracts from Object's Dexterity;
subtracts from Object's Intelligence;
subtracts from Object's Wgt;
subtracts from Object's movement vel ue:
subtracts from Object's Magic Points;

Page11



16["1OBJECT DES IGN

Ultima VI
Design Notes Collection - Technical Design

FUNCTIONS THAT ARE ASSOCIATED WITH THE OBJECT LIST

int MoxHP(NPCNum)
tnt NPCNum;

Returns the maximum hit points an Object can have. This is useful in determining oo'w'many hit
points to heal, or possi bly, oo'w'much damage can be given.

mt LeveJ(NPCNum)
int NPCNum;

Returns the current level of the NPCin Question. This function does not check to see that it is
accessi ng a proper NPC (ie. eccessi ng the tail of a multi -tile creature).

int 5trLeve I (NPCNum)
tnt NPCNum;

Returns Current Level based on Strength Experience points.

int DexLevel(NPCNum)
tnt NPCNum;

Returns Current Level based on Dexterity Experience points.

int IntLeve1(NPCNum)
int NPCNum;

Returns Current Level based on Intelliqence Experience points.

tnt FindLoc(x .•Y.•Z)
int x.•y, Z;

This is a scan routi ne that looks through the object list to fi nd the fi rst Object of type LOCXYZat
Location X,V,Z. If no Object is found returns a negative result, othervise, the vel ue is tbe index
into the Object List for the given object.

int NextLocO;

Conti nues a search started by findLocO. Returns the same information.

Paget2 rn. Mar 17, 1989



IBM OBJECT DES IGN
Ultima VI

Design Notes Collection - Technical Design

int Findlnv(ObjectNum)
int ObjectNum;

Searches for any objects of type CONTAINED,INVEN,or EQUIPassociated vtth ObjectNulD.
Returns the fi rst Object found, or a negative val ue if no object is associated 'With the given
ObjectNum.

int Nextlnv();

Conti nues a search started by fi od. ovO. Returns the same information.

int SeorchAreo(X 1~Y1~X2~Y2)
int X1#Y1~X2~Y2;

This is a scan routine that looks through the object list to find the first Object located 'Within the
region bounded by the rectange. NoZ coordt nate is needed si nee this routi ne does all searches by
usi ng global variable mapz If no Object is found, a negative result is returned, otnervise, the
value is the index into the Object list for the given object. This routine saves some internal
variables for use by other functions.

int NextAreo();

Conti nues 8 search started by Seare hArea ( ). Returns the same information.

int FindlnvType(ObjNum~ 'ObjType# Quolity)
int ObjNum# ObjType. Quolity;

Searches for an Object of QuaHty and ObjType associated vith ObjNum. ObjType is the
actual type of item such as a SWORD,KEV,ARROW,fOOD,etc. An associated object is of type
CONTAINED, INVEN,or EQUIP. A negative Quality peremeterpassed ignores quality checking. If
no such object is found, a negative result is returned.

int
int
struct
int

AddObj(Stotus .•locotion .•ShopeType .•ShopeNum. Amount)
status:
coord location;
ShopeType# ShopeNum.•Amount;

Addsan Object to the Object list. returns a negative result if placement failed. Status is the
Status Bits sent. LocatioR is the structure coord vmcn may ccntai n X,V,Zcoordi nates or a
pointer to an object. SbapeType is the Object Type and SbapeNum is the tile number to
display. Amouot corresponds to the number of that item available or its Quality/Quaotity
values. To place Quality/Quaotity values, convert them to AmouRt values 'Withthe
QualQuao() macro.

Frt, rtar 17, 1989 Page 13



IElM OElJECT DES IGN

Ultima VI
Design NotesCollection - Technical Design

int
int

De1eteOb j(Ob j ectNum)
ObjectNum;

Deletes an Object from the Object List.

int MoyeObj{ObjectNum~ X. Y. Z)
int Obj ectaum, X~ Y~ Z;

MovesObjectNum from anywhere (either in an inventory or on the map) to a location on the
map. This could be parttcularl y useful for droppt ng items, movtng thi figsaround, and
teleportt fig.At this vriti ng, teleporti ng can onl y happen to Player's characters. Later versions
might support more sophisticated handling of Objects. Anegative return value indicates failure.

int Inser:-tObj(ObjNum. Destun] , Placement)
int Obj Num~DestObr. Placement;

Places ObjNum into OestObj. Placement is a modifier 'IIIhichdetermines ObjNum's
association to DestObj. Placement's values are CONTAINED,INVEN,or EQUIP.A negative
return value indicates a failure to insert.

tnt GiyeObj(Owner~ ObjType~ Amount)
int Owner .•ObjType~ Amount;

Addto the Quantity of ObjType (owned or contained by Oyner) by the Amount given. OYner
may be a monster, a player, or even a chest. Afail ure returns a negative result. If the Object
does not exist in Oyner's inventory, then it is added.Objects that use Amount, rather than
Quality/Quantity will be handled properly. If Quality and Quantity need to be passed,
compress them using the QualQuan() macro.

tnt TakeObj(Owner~ ObjType~ Amount)
int Owner~ ObjType~ Amount;

Subtract Qualitity of ObjType (owned or contei ned by Oyner) by the Amount given. OYner
may be a monster J a player J or even 8 chest. Afail ure returns a negative result. If the quantity
of an exieti ngObject is reduced to a negative level J it will be deleted. Objects that use Amouat,
rather than Quality/Quantity will be handled properly. If Quality and Quantity need to be
passed, compress them using the QualQuanO macro.

tnt TransferObj(OldOwner~ NewOwner. ObjType~ Amount)
int OldOwner~ NewOwner. ObjType. Amount;

Transfer the Quantity ofObjType (owned or contained by O1dOvner) by Amount to
NeyOYner. Owners may be monsters, players J or even chests. Afail ure returns a negative
result. Objects are created and deleted as necessary. Objects that use Amount, rather than
Quality/Quantity will be handled properl y. If Quality and Quantity need to be passed,
compress them usi ng the QualQuan() macro.

Page 14 Fri J Mar 17, 1989

r •

"'"



IBM OBJECT DES IGN
Ultima VI

Design Notes Collection - Technical Design

int Encumbronce(ObjNum)
int ObjNum;

fi nd out nov much 'vIeight is contei oed 'vIithin Obj Num. It does not i nclude the veiqnt of
Obj Num. Thus, vith this rout] ne, a person can fi nd out ho'vlmuch 'vIeight is in a backpack or
sack, or ho'vlmuch 'vIeight a man is lifti ng.

int C1eorSpoce(Number ,x,y)
int Number, x, y;

Clears out space in the Object tist for Number- of Objects at location x, •.•.This reuti ne returns
a negative result if operation failed. Otrervise, the i odex to the fi rst clear space is returned.

int NextSpoce();

returns index of the next Object Slot created by the Clear-Space() function. returns it negative
result if the end of the list is reached.

int CreoteMonster(MonsterType, x, y, z)
tnt MonsterType. x, y. z:

Creates a ne'w'monster of the given type and adds it into the NPCportion of the Object List. The
number returned is the 1ndex 1nto this Iist vbere the monster 'vias placed. A negative vel ue 1S
returned if the creation 'viasa fail ure.

int loodNewRegions(x,y)
int x,y;

loads nev Object Regions into the Object List. DONOTCAll THIS fUNCTION.This is vntten only
to inform the staff of its use. This function 'vim produce changes to the object list vmch can
produce bugs in your code. At this vriti ng, a call to NextSpace() , NextLocO, or any other
Next ... O type function. 'vim be i nvalid after a player has 'vialked off into a nev region. In
edoition, ScntchBuff[) is used by this function. Be careful vren usi fig this area of memory,
especiall y vhen poesi ble Object rearrangement can happen.

rn. r1ar t 7, t 989 Page 15




