IBM OBJECT DESIGN
Ultima VI

Design Notes Collection - Technical Design

OBJECT DESIGN

This section discusses those features about objects that will be implemented in &7#7ma ¥/ . The
primary author of this section 13 Herman Miller. Any questions should be addressed to him.

DEFINITIONS

Object:

Shape Type

Safe Macro:

Unsafe Macro:

An object is any animate or inanimate thing that can be manipulated or
changed by a player of &7¢7me ¥/ . |n the inanimate case, doors, bottles,
chairs, carts, chests, etc. are considered to be objects of the simple kind.
These objects are described by a similar structure listed in further pages of
this document. In the animate case, an object may be considered to be a Non-
Player character, an enchanted, dancing chair, or a monster. In general, an
animate object could also be called a monster or NPC, In a few rare cases will
an object be animate that does not take on living characteristics. Asinan
inanimate object, an animate object has the same Object Structure to define
its basic characteristics, but it also contains additional information to define
its more living qualities

The Shape Type of a tile is the Number of the first tile in the group of tiles or
it may be a reference number base for a tile. The first case would apply to
objects like doors. The shape type would be the door tile number. Whether it
wa3 open or not (a different tile), the shapetype for any door found would be -
the same. The second case would make the shape type the first tileinan
animation sequence {contiguous tiles).

A macro that does not cause mysterious effects to occur when & parameter uses
increment ++ and decrement - - operators, or other potentially destructive
expressions.

& Macro that caus== mysterious effects to occur when the parameter(s)
passed contain compiex expressions and/or increment ++ or decrement --
operators.

RESTRICTIONS AND USES

Since every thing that can be manipulated by an &7#7ma ¥f player is considered to be an object,
there are very few restrictions as to what may potentially be done by the player. It is concievable
to turn a statue of a tiger into a real tiger. It is possible to reduce a person to wood shavings. & door
can be turned into a window, or a wizard. There is a practical limit to the number of more complex

objects in the game.

Because of the increase in size of the structure, a limit of 256 of these objects

is allotted. Most of these will be the NPC's that can be found in the game. There is a possibility that
another 32 or so will be added to act as monsters to be generated for combat.

Fri, Mar 17, 1989

Page 1




161 OBJECT DESIGN

Ultima VI

Design Notes Collection - Technical Design

DATA STRUCTURES

The Object 1ist is a compilation of similar data structures. For simplicity and speed, the first 256
of these structures are the extended type needed for characters and monsters. The next 256
Objects are the party inventory. The rest of the Object List is divided into 16 regions, each region
being part of the map. When characters cross from one map region to another, the Object Lists for
the new regions are loaded and the old ones are saved. [n the iBM implementation the structures
are saved in memory as parallel arrays. For purposes of discussion, they will be viewed as
follows:

D??;Et Memory Contents
+0
T ObjStatus
+2
+3 - [ struct coord
sl [ ObjPos
+5 i
% strqct shapetype -
7 ObjShapeType
e Amount
+0 contains Quality/Quantity |
+A Strength/wgt &
+B Dex/Mov
+C Intell/Mag
+D
£ Strixp —
+F
elo [7 - DOREKR AL ideddéta for
+11 o IALESR A NPC's, Monsters
+12 and "Living”
+13 HitPts objects
+14 ‘\‘\
— ] \ ol ?
1:2 . Schedule  —{ [p° #\:g.,«; V’\S}G"”
- - \ne A Qo
+17 orf o ey
+18 NPCFlags gt
o
+19 Leader L d

Page 2 Fri, Mar 17, 1989



{BM OBJECT DESIGN
Ultima VI

Design Motes Collection - Technical Design

ABOUT ObjStatus

ObjStatus is a series of flags, with each bit or combination of bits describing the condition of
anobject. The diagram describes their locations and functions.

ObjStatus word
1|14[13)12[11]10)9 |8 | 7] 6| 5] 4|3]|2|1]0

b= L]
Reserved; setto O —J J .

INVISIBLE
invisible = 1
not invisible =

BERSERK
berserk = 1
not berserk =0

PARALYZED —
paralyzed = 1
not paraljzed =
ASLEEP —
asleep=1
not asleep=0

POISONED —
poisoned = 1
not poisoned = 0

BLESSED or MAGLOCKED —
blessed or magic locked = 1
not blessed or magic locked =0

CURSED or LOCKED —
cursed or locked = 1
not cursed or locked = 0

LITor OPEN —
lit object or an open door = I
unlit object or a closed door =

DEAD or BROKEN —
dead or broken = 1
not dead or broken =

coord structure use —
NPC equrgped item = 1 l
NPC i lmfen item =
ject = OI
loca ion = 00

object ahgnment

atta ck an =11

" e: angn‘zg =10

mons er aligned = 01

passive =00
CONTROL —

player control = |
computer control =0

SENTIENT —
sentient = 1
not sentient =0

—

Fri, Mar 17, 1989 Page 3




1BM OBJECT DESIGHN

Ultima VI

Design Notes Collection - Technical Design

ABOUT struct coord ObjPos

ObjPes is actually 3 bytes that act as if they were & union of four structures.They are not a
union in the C Language sense because they are not declared as such. A diagram of its four uses
is detailed below.

0bjPes has 4 functions, In most cases it will register the X-¥-Z location of an object. But
in other cases, the object will be associated with another object. These associations may be
¥ithin, Inveatory, or Equipped. In such instances, ObjPes uses its two lower bytes to
act as a pointer to the associated object. Theoretically, such a system would allow nesting of
associations. In &#¢ima ¥/ this will not occur.

Inventurg, Equipped, and Within type struct coord

Byte Bit Positions
Uffset 7 6 543210
+0 2 =
+1
+2

Pointer to Associated
Object

D Unused Bits

X-¥-Z Location structure coord

Byte Bit Positions

Offset 76 543210
+0 XKIR|R[R[R|R]|®]|X
* AEIEIEIEIE IR
+2 zlzlzlz|ylylyly

Page 4 Fri, Mar 17, 1989



|BM OBJECT DESIGN
Ultima VI

Design Hotes Collection - Technical Design

ABOUT struct shapetype ObjShapeType

ObjShapeType contains infor mation about the type of object there is and it current on-
screen shape. Both of these pieces of information take 12 bits to describe, so three bytes have
been allocated to their use.

struct shapetype

N
VoAl &) (K\ﬁpb
Byte Bit Positions A % : e
< Offset 76 543210 | | |
Cel-O%)lype e R

+( £ /
i NU +l DR S YOK IO /
- ed" }/r’(:/\vvle Y\'\ AT A AR A
R O O B
+2 EEN NN NENE WY
q 7 A7y s

Ge}gho\,aeNuw\

Shape Number Showing

Shape Type in Actuality

ABOUT Amount

Amount is a 2-byte value that serves a double purpose. In cases where the Quality of an
item is not of particular use, ie. Food and Gold, both bytes are used as a counter. In most other
cases the bytes are divided up into Quality and Quantity bytes.

Quantity indicates how many of the given object is available. The range is 0-255.
Quality serves a unique purpose for each type of Object. For example, the Quality of a key
could refer to what door it will open. & simple test of the Quality of a door against the

Quality of a key will determine if that key opens the door. A Quality associated with an
Object called “Magic Spell” would indicate which magic spell it was.

ABOUT Strength/wgt
Strength/Wagt is a 1-byte value that is composed of two nibbles of data. The low nibble

contains the actual strength value of the Object, The high nibble contains the weight it may
carry.

ABOUT Dex/Mov

Dex/Mov is a 1-byte value that is composed of two nibbles of data. The low nibble contains
the actual dexterity value of the Object, The high nibble contains the movement points it has
left.

Fri, Mar 17, 1989 Page S




iBM OBJECT DESIGN

Ultima VI

Design Notes Collection - Technical Design

ABOUT Intell/Mag
intell 7/Mag is a 1-byte value that is composed of two nibbles of data. The low nibble contains

the actual intelligence value of the Object, The high nibble contains the Magic points available
for use.

ABOUT Strixp, DexExp, and IntExp

These a 2-byte values keep track of the amount of experience gained in each statistic.

ABOUT HitPts

Contains a record of how many hit points the Object has left.

ABOUT Schedule

Schedule is still not developed at this time.

ABOUT NPCFlags

NPCFlags contains extra information regarding an NPC. Here it will be determined what kind
of movement mode the Object is in. Follow mode can now be defined as Adjacent an Nearby to
help the NPC Tracker move multi-tile objects. Drunk and Fleeing conditions can also be
noted here.

ABOUT Leader

Leader is a pointer to the Leader Object. This is especially useful to the NPC Tracker which
must move Jbjects in a particular direction based on the Following Mode. Ina multi-tile
monster, the Leader will be considered to be the head. All Objects associated with the creature
will have this location filled with the Number of the head.

Page 6 Fri, Mar 17, 1989



IBM OBJECT DESIGN
Ultima VI

Design Notes Collection - Technical Design

IBM OBJECT DATA ORGANIZATION

#s mentioned above, the data structure organization in IBM memory is actually a series of parallel
arrays. Some of these arrays are to be accessed only by macros, others by direct manipulation of
the arrays. A complete Listing of those arrays and their description and accessing methods are
listed below.

FUNCTIONS AND MACROS AVAILABLE

The following list of functions and macros are designed to properly interface with the Object Data
Structure. These routines will be the only interface method accepted. Since Macros are also
discussed here, 1t should be pointed out that Macros will be divided into safe and unsafe
categories. All macros are to be considered unsafe unless stated otherwise.

ARRAYS AVAILABLE FOR GENERAL ACCESSING

These arrays may be manipulated directly in the standard fashions. DO NOT access the other
arrays in any other fashion, other than the macros given.

unsigned int Amount[ListSize]; same memory as Quality/Quantity bytes.
Use this ONLY when Quality and Quantity
are not important. Otherwise, use the macros
to access this data array. At this writing you
may use Amount when you are manipulating

Food and Gold.
unsigned int StrExpl256]; found in extended structure
unsigned int DexExpl[256]; found in extended structure
unsigned int IntExp[256]; found in extended structure
unsigned char  HitPts[256]; found in extended structure
unsigned char  Leader[256]; found in extended structure

MACROS WHICH MANIPULATE Amount IN Quality/Quantity FORMAT
These macros place values into each byte as defined in the structure of Amouat.

char GetQual(ObjectNum);
char GetQuan{ObjectNum);

char SetQual(0ObjectNum, Yalue); returns Yalue given

char SetQuan{ObjectNum, Value); returns Yalue given

char AddQual{ObjectNum, Value); returns new Quality amount
char AddQuan{ObjectNum, Yalue); returns new Quantity amount
char SubQual(0ObjectNum, Value); returns new Quality amount
char SubQuan{0ObjectNum, Value}; returns new Quantity amount

char QualQuan(Quality, Quantity); Compresses Quality and Quantity into an
integer to place into array Amount.

Fri, Mar 17, 1989 Page 7




IBM OBJECT DESIGN
Ultima VI

Design Notes Collection - Technical Design

MACROS WHICH TEST ObjStatus BITS

These macros are considered safe. Each macro returns a TRUE or FALSE result depending on
whether the bit is set or clear. in general, if a bit is set, the result is TRUE. See fig. 4 for a
complete listing of the bit fields being tested. Note that 4 bit fields have overlapping functions. The
macro list below places those macros which operate on the same bits on the same line.

These macros test the simple Bit fields in ObjStatus.

int IsPlrControl{0ObjectNum); player or computer controlled object?
int IsSentient{ObjectNum);

int IsBroken(0ObjectNumj; int IsDead(0ObjectNum);

int IsLit(ObjectNum); int IsOpen(ObjectNum);

int IsCursed{ObjectNum); int IsLocked{ObjectNum);
int IsBlessed{0bjectNum); int IsMagLocked(ObjectNum);

int IsPoisoned(ObjectNum);
int IsAsleep(0ObjectNum);
int IsParalyzed(ObjectNum);
int IsBerserk{ObjectNum);
int Islnvisible(ObjectNum);

These macros test the alignment of an object

int IsNeutral{ObjectNum); is alignment passive?

int IsGood{0ObjectNum); is it player aligned?

int IsEvil{0ObjectNum); is it monster aligned

int IsChaotic{(ObjectNum); is it an enemy to everything?

These macros determine how struct coord is to be used. Also determines if an item is equipped or
not.

int 1sXYZ{0ObjectHum); used as an XYZ locator ?

int 1slnObj{0bjectNum); used as an association to an object?

int IsEquipped(0ObjectNum); used to tell to which NPC it is equipped?
int IsUnEquip(0ObjectNum); used as an NPC inventory but not equipped?
int Isinven{ObjectNumj; used as an NPC inventory equipped or not?

Page 8 Fri, Mar 17, 1989



IBM OBJECT DESIGN
Ultima VI

Design hotes Collection - Technical Design

MACROS WHICH MANIPULATE ObjStatus BITS

The following macros are safe to use. Set...() sets a status bitto 1, CIr...{) returnsa bit to 0.
Those macros which operate on the same status bits but have differing names are preceeded by
similar markers.

void SetSentient{ObjectNum); void ClrSentient(0ObjectNumj);
void SetPlrControl(0ObjectNum); void CIrPIrControl{(0ObjectNum);

1 void SetBroken(ObjectNumj); void ClrBroken(ObjectNum);
1 void SetDead(0ObjectNum); void ClrDead(ObjectNum);
2 void SetLit(ObjectNum); void CIrLit{ObjectNum);

2 void SetOpen{(ObjectNum]); void ClrOpen(ObjectNum);
3 void SetCursed(0ObjectNum); void ClrCursed(ObjectNum);
3 void SetLocked(ObjectNum); void ClrLocked(ObjectNum);

4 void SetBlessed(ObjectNumj; void ClrBlessed(0ObjectNum);
4 void SetMagLocked(ObjectNum);  void ClrMagLocked(ObjectNum);
void SetPoisoned(0ObjectNumj); void ClrPoisoned(ObjectNum);
void SetAsleep(ObjectNum); void ClrAsleep(ObjectNum);
void SetParalyzed{ObjectNum); void ClrParalyzed(0ObjectNum);
void SetBerserk{ObjectNum); void ClrBerserk(ObjectNumj;

void Setinvisible(ObjectNum); void Clrinvisible{ObjectNum);

SPECIAL MACRUOS FOR ObjStatus
The two Get...{) macros return the full values of their combination bits. The Set...() macro
must be passed the cormparisons listed to work correctly. The Get...() macros are safe. The

Set...{) macrois unsafe.

void SetAlignment(ObjectNum, Alignment);
int GetAlignment{ObjectNum);
int GetCoordUse(ObjectNum); Macro to determine how struct ceord is used.

Return Values from LOCXYZ acts as XYZ location
GetCoorduse() CONTAINED pointer to object itisin
INVEN pointer to NPC it belongs to
EQUIP pointer to NPC it is equipped on.
Alignments are: NEUTRAL passive alignment
EVIL monster aligned
GO0D player aligned

CHAOTIC attack everything

Fri, Mar 17, 1989 Page 9




IBM OBJECT DESIGN
Ultima VI

Design Notes Collection - Technical Design

MACROS WHICH MANIPULATE STRUCT coord ObjPos

The Get...{) macros are safe.

int GetX(ObjectNum);
int  Get¥(ObjectNum);
int GetZ{ObjectMNum);
int GetAssoc(0ObjectNum);

returns X coordinate of an object
returns Y coordinate of an object
returns Z coordinate of an object
returns pointer number when struct

coord is used a3 an inventory, equipped,
or within type.

MACROS WHICH MANIPULATE STRUCT coord
Macros used on struct coerd defined in a function:

GetCoordX({StructName);
GetCoord¥(StructName};
GetCoordZ(StructName);
GetCoordAssoc(StructName);

int
int
int
int

returns X coordinate of an object
returns Y coordinate of an object
returns Z coordinate of an object
returns pointer number when struct

coord is used as an inventory, equipped,
or within type.

SetCoordX(StructName, X);
SetCoord¥(StructName, Y);
SetCoordZ{StructName, ZJ;
SetCoordX¥Y(StructName, X, ¥);
SetCoordXYZ(StructName, X, ¥, Z);

void
void
void
void
void

void SetCoordAssoc{StructName, Yalue);

Page 10

sets X coordinate of an object

sets Y coordinate of an object

sets Z coordinate of an object o
sets X and Y coordinates of an object

sets X, Y, and Z coordinates of an

object

sets pointer number when struct

coord is used as an inventory,
equipped, or within type.

Fri, Mar 17, 1989



IBM OBJECT DESIGN

Ultima VI

Design Notes Collection - Technical Design

MACROS THAT OPERATE ON STRUCT shapetype ObjShapeType

These macros operate with struct shapetype in the object list. Get...{) macros are safe. Set...()
macros are unsafe.

int
int

void SetShape({ObjectNum, ShapeNum);

void SetType(ObjectNum, ShapeType);

GetShape(ObjectNum);
GetType(ObjectNum);

returns Shape Number of Object
returns Shape Type of Object

sets the Shape Number of an
Object.

sets the Shape Type of an Object.

MACROS WHICH MANIPULATE THE EXTENDED PORTION OF OBJECTS
The first 256 Objects are slightly different than other objects in that their structure is the
extended type found on page 3. The following macros deal with the extra fields shown.

int
int
int
int
int
int

void
void
yoid
yoid
void
void

GetStr{ObjectNum);
GetDex(ObjectNum);
GetInt(ObjectNum);

Getwgt{ObjectNum);
GetMov(ObjectNum);
GetMag(ObjectNum);

SetStr{0bjectNum, NewStr);
SetDex(0ObjectNum, NewDex);
Setint{ObjectNum, Newlint);
SetWgt{ObjectNum, Newwgt);
SetMov(0ObjectNum, NewMov);
SetMag(ObjectNum, NewMag);

returns Object’s Strength;
returns Object’s Dexterity;
returns Object’s Intelligence;
returns Object’s Wagt;

returns Object’s movement value;
returns Object’s Magic Points;

sets Object’s Strength;

sets Object’s Dexterity;

sets Object’s Intelligence;
sets Object’s Wat;

sets Object’s movement value;
sets Object’s Magic Points;

These Macros do not do bounds checking at all. They wrap around

void
void
void
void
void
void

AddStr{0bjectium, add);
AddDex(0ObjectNum, add);
Addint{(ObjectNum, add);
Addwgt(ObjectNum, add);
AddMov{0ObjectNum, add);
AddMag(0ObjectNum, add);

adds to Object’s Strength;

adds to Object’s Dexterity;

adds to Object’s Intelligence;
adds to Object’s Wagt;

adds to Object’s movement value;
adds to Object’s Magic Points;

These Macros do not do bounds checking at all. They wrap around

void
void
void
void
void
void

SubStr(ObjectNum, sub);
SubDex(0ObjectNum, sub);
Sublint{(ObjectNum, sub);
SubWgt(ObjectNum, sub);
SubMov(0bjectNum, subj;
SubMag(ObjectNum, sub);

Fri,Mar 17, 1989

subtracts from Object’s Strength;
subtracts from Object’s Dexterity;
subtracts from Object’s Intelligence;
subtracts from Object’s Wat;

subtracts from Object’s movement value;
subtracts from Object's Magic Points;

Page 11




IBM OBJECT DESIGN
Ultima VI

Design Notes Collection - Technical Design

FUNCTIONS THAT ARE ASSOCIATED WITH THE OBJECT LIST

int MaxHP{NPCNum)
int NPCNum;

Returns the maximum hit points an Object can have. This is useful in determining how many hit
points to heal, or possibly, how much damage can be given.

int Level{NPCNum)
int NPCNum;

Returns the current level of the NPC in Question. This function does not check to see that it is
accessing a proper NPC (ie. accessing the tail of a multi-tile creature).

int StrLevel{NPCNum)
int NPCNum;

Returns Current Level based on Strength Experience points.

int DexlLevel{NPCNum)
int NPCNum;

Returns Current Level based on Dexterity Experience points.

int IntLevel{NPCNum)
int NPCNum;

Returns Current Level based on Intelligence Experience points.

int FindLoc(x, y, z)
int X, 4, Z;

This is a scan routine that looks through the object 1ist to find the first Object of type LOCXYZ at
Location X,Y,Z. If no Object is found returns a negative result, otherwise, the value is the index
into the Object List for the given object.

int NextLoc();

Continues a search started by FindLec( ). Returns the same information.

Page 12 Fri, Mar 17, 1989

o



IBM OBJECT DESIGN
Ultima VI

Design Motes Collection - Technical Design

int Findinv(ObjectNum)
int ObjectNum;

Searches for any objects of type CONTAINED, INYEN, or EQUIP associated with ObjectNum.
Returns the first Object found, or a negative value if no object is associated with the given
ObjectHum.

int Nextinv();

Continues & search started by Findlav({). Returns the same information.

int SearchArea(X1, Y1, X2, ¥2)
int X1, ¥1, X2, Y2;

This is a scan routine that looks through the object list to find the first Object located within the
region bounded by the rectange. No Z coordinate is needed since this routine does all searches by
using global variable mapz If no Object is found, a negative result is returned, otherwise, the
value i3 the index into the Object List for the given object. This routine saves some internal
variables for use by other functions.

int NextArea();

Continues a search started by Searcharea(). Returns the same information.

int FindinvType{ObjNum, ObjType, Quality)
int ObjNum, ObjType, Quality;

Searches for an Object of Quality and ObjType associated with ObjNum. ObjType is the
actual type of item such as a SWORD, KEY, ARROW, FOOD, etc. An associated object is of type
CONTAINED, INYEN, or EQUIP. A negative Quality parameter passed ignores quality checking. If
no such object is found, a negative result is returned.

int AddObj(Status, Location, ShapeType, ShapeNum, Amount)
int Status;

struct coord Location;

int ShapeType, ShapeNum, Amount;

Adds an Object to the Object List. returns a negative result if placement failed. Status is the
Status Bits sent. Location is the structure coord which may contain XY ,Z coordinates or a
pointer to an object. ShapeType is the Object Type and ShapeNum is the tile number to
display. Amount corresponds to the number of that item available or its Quality/Quantity
values. To place Quality/Quantity values, convert them to Amount values with the
QualQuan() macro.

Fri, Mar 17, 1989 Page 13




IBM OBJECT DESIGN

Ultima VI

Design Notes Collection - Technical Design

int DeleteObj{0bjectNum)
int ObjectNum;

Deletes an Object from the Object List.

int MoveObj{ObjectNum, x, y, 2)
int ObjectNum, x, Y, z;

Moves ObjectMum from anywhere {either in an inventory or on the map) to a location on the
map. This could be particularly useful for dropping items, moving things around, and
teleporting. At this writing, teleporting can only happen to Player’s characters. Later versions
might support more sophisticated handling of Objects. A negative return value indicates failure.

int InsertObj{0ObjNum, DestObj, Placement)
int DbjNum, DestObj, Placement;

Places ObjNum into DestObj. Placement is a modifier which determines ObjNum’s
association to DestDbj. Placement’s values are CONTAINED, INYEN, or EQUIP. A negative
return value indicates a failure to insert.

int GiveObj{Owner, ObjType, Amount)
int Owner, ObjType, Amount;

Add to the Quantity of 0bjType {owned or contained by Owner) by the Amount given. Owner
may be a monster, a player, or even a chest. A failure returns a negative result. If the Object
does not exist in Owner’s inventory, then it is added. Objects that use Amount, rather than
Quality/Quantity will be handled properly. If Quality and Quantity need to be passed,
compress them using the QualQuan{) macro.

int TakeObj{Owner, ObjType, Amount)
int Owner, ObjType, Amount;

Subtract Quantity of ObjType (owned or contained by Owner) by the Amount given. Owner
may be a monster, a player, or even a chest. A failure returns a negative result. If the quantity
of an existing Object is reduced to a negative level, it will be deleted. Objects that use Amount,
rather than Quality/Quantity will be handled properly. If Quality and Quantity need to be
passed, compress them using the QualQuan{) macro.

int TransferObj(0ldOwner, NewOwner, ObjType, Amount)
int 0ldOwner, NewOwner, ObjType, Amount;

Transfer the Quantity of ObjType {owned or contained by O1d0wner) by Amount to
HewOwner. Owners may be monsters, players, or even chests. A failure returns a negative
result. Objects are created and deleted as necessary. Objects that use Ameunt, rather than
Quahtumuanhtu will be handled properly. If Quality and lluantltu need to be passed,
compress them using the QualQuan{} macro.

Page 14 Fri, Mar 17, 1989



IBM OBJECT DESIGN
Ultima VI

Design Notes Collection - Technical Design

int Encumbrance(0bjNum)
int DbjNum;

Find out how much weight is contained within ObjNum. It does not include the weight of
ObjNum. Thus, with this routine, a person can find out how much weight is in a backpack or
sack, or how much weight a man is lifting.

int ClearSpace(Number,x,y)
int Number, x, y;

Clears out space in the Object List for Number of Objects at location x,y. This routine returns
a negative result if operation failed. Otherwise, the index to the first clear space is returned.

int NextSpace();

returns index of the next Object Slot created by the ClearSpace() Function. returns a negative
result if the end of the Tist is reached.

int CreateMonster{MonsterType, x, y, z)
int MonsterType, %, y, 2;

Creates a new monster of the given type and adds it into the NPC portion of the Object List. The
number returned is the index into this list where the monster was placed. & negative value is
returned if the creation was a failure.

int LoadNewRegions(x,y)
int X.4;

Loads new Object Regions into the Object List. DO NOT CALL THIS FUNCTION. This is written only
to inform the staff of its use. This function will produce changes to the object Tist which can
produce bugs in your code. At this writing, a call to NextSpace(), NextLoc(), or any other
Next.__() type function. will be invalid after a player has walked off into a new region. in
addition, ScratchBuff[] is used by this function. Be careful when using this area of memory,
especially when possible Object rearrangement can happen.

Fri, Mar 17, 1989 Page 15




N’



